회원 로그인 창

  • 학술정보관 홈페이지에서 로그인 해주세요
로그인 메뉴

따끈따끈! 신착 전자책

더보기

콘텐츠 상세보기
XAI 설명 가능한 인공지능, 인공지능을 해부하다


SMART
 

XAI 설명 가능한 인공지능, 인공지능을 해부하다

안재현 | 위키북스

출간일
2020-03-27
파일형태
PDF
용량
18 M
지원 기기
PC 스마트폰태블릿PC
대출현황
보유1, 대출0, 예약중0
콘텐츠 소개
저자 소개
목차
한줄서평

콘텐츠 소개


XAI(eXplainable Artificial Intelligence)는 인공지능의 판단 이유를 설명하는 연구 분야로, 인공지능 기술이 확대되면서 그 필요성이 함께 증가하고 있습니다. 이것은 알고리즘의 설계자조차 인공지능의 판단 이유를 설명하지 못하는 ‘블랙박스‘ 인공지능과 반대되는 개념입니다. XAI는 인공지능의 불확실한 의사 결정 과정을 해소해 인공지능에 대한 신뢰성을 높여줍니다.

이 책에는 전통적인 머신러닝 기법에 적용할 수 있는 XAI 기법부터 최신 딥러닝 모델에 사용할 수 있는 XAI 기법까지 수록돼 있습니다. XAI는 인공지능의 의사 결정 이유를 추정하는 기술이기 때문에 이론뿐만 아니라 기법 적용 과정 또한 중요합니다. 따라서 이 책에는 기존 XAI 서적에서 다루지 않았던 예제 코드를 함께 수록했습니다. 먼저 이론을 학습하고 해당 이론에 대응하는 코드를 따라 하면서 별도의 설치 과정 없이도 XAI 해석 결과를 직접 확인할 수 있습니다.

★ 이 책에서 다루는 내용 ★
◎ 피처 중요도
◎ 부분 의존성 플롯
◎ XGBoost 모델 구축
◎ LIME(Local Interpretable Model-agnostic Explanations)
◎ SHAP(SHapley Additive exPlanations)
◎ 필터 시각화
◎ 합성곱 신경망(CNN) 구축
◎ LRP(Layer-wise Relevance Propagation)
◎ 실전 분석 1: 신용 대출 분석 모델 구축하고 설명하기
◎ 실전 분석 2: 사진 감정 분석 모델 구축하고 설명하기

저자소개


저자 : 안재현
(現) 넥슨코리아 인텔리전스랩스 데이터 과학자
(前) 버즈니 데이터 과학자
정보통신산업진흥원 소프트웨어 마에스트로 5기
서강대학교 데이터마이닝 연구실 졸업
서강대학교 컴퓨터공학과 졸업

목차

▣ 01장: 이야기를 열며
1.1. 다르파(DARPA)의 혁신 프로젝트
1.2. XAI (2016-2021)
1.3. XAI를 잘하기 위한 조건
___1.3.1. 기존 머신러닝 이론을 충분히 이해하기
___1.3.2. 설명 모델을 어떻게 접목할지 생각하기
1.4. xgboost를 사용한 XAI와 딥러닝 XAI?
1.5. 감사 인사

▣ 02장: 실습환경 구축
2.1. 파이썬 설치
2.2. PIP 설치
2.3. 텐서플로 설치
2.4. 주피터 노트북
2.4.1. Tensorflow-GPU 설치 확인

▣ 03장: XAI 개발 준비
3.1. 머신러닝 이해
3.2. 블랙박스 들여다보기
3.3. 시각화와 XAI의 차이 이해하기

▣ 04장: 의사 결정 트리
4.1. 의사 결정 트리 시각화
4.2. 피처 중요도 구하기
4.3. 부분 의존성 플롯(PDP) 그리기
4.4. XGBoost 활용하기
___4.4.1. XGBoost의 장점
___4.4.2. XGBoost는 딥러닝이 아니다
___4.4.3. 기본 원리
___4.4.4. 파라미터
___4.4.5. 실제 동작과 팁
4.5. 실습 1: 피마 인디언 당뇨병 결정 모델
___4.5.1. 학습하기
___4.5.2. 설명 가능한 모델 결합하기
___4.5.3. 모델 튜닝하기
___4.5.4. 마치며

▣ 05장: 대리 분석
5.1. 대리 분석 개론
___5.1.1. 글로벌 대리 분석
___5.1.2. 로컬 대리 분석(Local Surrogate)
5.2. LIME
___5.2.1. LIME 알고리즘, 직관적으로 이해하기
___5.2.2. 배경 이론
___5.2.3. 실습 2: 텍스트 데이터에 LIME 적용하기
___5.2.4. 실습 3: 이미지 데이터에 LIME 적용하기
___5.2.5. 마치며
5.3. SHAP (SHapley Additive exPlanations)
___5.3.1. 배경 이론
___5.3.2. 실습 4: 공유 경제 스타트업에서 섀플리 값 사용하기
___5.3.3. 실습 5: 보스턴 주택 가격 결정 요소 구하기
___5.3.4. 마치며

▣ 06장: 필터 시각화(Filter Visualization)
6.1. 이미지 필터 시각화
6.2. 설명 가능한 모델 결합하기
___6.2.1. 합성곱 신경망과 필터
6.3. 합성곱 신경망 제작하기
6.4. 실습 6: 합성곱 신경망 시각화하기
___6.4.1. 입력값 시각화하고 예측값과 비교하기
___6.4.2. 필터 시각화
6.5. 마치며

▣ 07장: LRP(Layer-wise Relevance Propagation)
7.1. 배경 이론
___7.1.1. 분해(Decomposition)
___7.1.2. 타당성 전파
7.2. 실습 7: 합성곱 신경망 속 열어보기
___7.2.1. 합성곱 신경망 학습하기
___7.2.2. 합성곱 신경망 부분 그래프 구하기
___7.2.3. 합성곱 신경망에 LRP 적용하기
___7.3. LRP 등장 이전과 이후의 딥러닝 XAI 동향
7.4. 마치며

▣ 08장: 실전 분석 1: 의사 결정 트리와 XAI
8.1. 신용 대출 분석 인공지능 만들기
___8.1.1. 데이터 설명
___8.1.2. 칼럼 설명
___8.1.3. 데이터 불러오기
___8.1.4. 데이터 학습하기
8.2. XAI를 결합하기
8.3. XAI로 모델을 파악하기
8.4. XAI로 모델 개선 근거 마련하기

▣ 09장: 실전 분석 2: LRP와 XAI
9.1. 감정 분석 모델 만들기
___9.1.1. 데이터 설명
___9.1.2. 칼럼 설명
___9.1.3. 데이터 불러오기
___9.1.4. 데이터 학습하기
9.2. XAI 결합하기
9.3. XAI로 원래 인공지능 개선하기
9.4. 고지사항

▣ 10장: 이야기를 닫으며
10.1. 암흑물질 찾기
10.2. 기존 모델에 XAI 덧입히기
10.3. XAI의 미래

▣ 11장: 참고자료
11.1. XAI 실습 라이브러리 설치하기
___11.1.1. 파이썬 설

한줄서평

  • 10
  • 8
  • 6
  • 4
  • 2

(한글 300자이내)
리뷰쓰기
한줄 서평 리스트
평점 한줄 리뷰 작성자 작성일 추천수

등록된 서평이 없습니다.